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Abstract The human eye gaze is an important non-verbal cue that can unobtrusively
provide information about the intention and attention of a user to enable intelligent
interactive systems. Eye gaze can also be taken as input to systems as a replacement
of the conventional mouse and keyboard, and can also be indicative of the cognitive
state of the user. However, estimating and applying gaze in real-world applications
poses significant challenges. In this chapter, we first review the development of gaze
estimation methods in recent years. We especially focus on learning-based gaze
estimation methods which benefit from large-scale data and deep learning methods
that recently became available. Second, we discuss the challenges of using gaze
estimation for real-world applications and our efforts toward making these methods
easily usable for the Human-Computer Interaction community. At last, we provide
two application examples, demonstrating the use of eye gaze to enable attentive and
adaptive interfaces.

1 Introduction

The human eye has the potential to serve as a fast, pervasive, and unobtrusive way
to interact with the computer. Reliably detecting where a user is gazing at allows
the eyes to be used as an explicit input method. Such a new way of interaction
has been shown to outperform traditional input devices such as the mouse due to
the ballistic movement of eye gaze [42, 52]. Moreover, it allows interaction under
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Fig. 1 The standard setting for remote camera-based gaze estimation. A camera captures images of
the user’s face region. The problem of gaze tracking is to infer the 3D gaze direction in the camera
coordinate system or the 2D point-of-gaze (PoG) on the screen from the image recorded by the
camera

circumstanceswhere no external input device is available or operable by the user [27].
Beyond explicit input, the movement patterns of a user’s eyes reveal information
about the cognitive processes, level of attention, and interests or abilities [6]. This
offers exciting opportunities to develop novel intelligent and interactive systems that
truly understand the user.

In this chapter, we focus on remote camera-based gaze estimation and its appli-
cations. This is typically done in a setting such as that depicted in Fig. 1 where a
camera is positioned at a certain distance from and facing the user’s eyes. The prob-
lem these methods aim to solve is to infer the 3D gaze direction or the 2D on-screen
point-of-gaze (PoG) from images recorded by the camera. The 3D gaze origin is
often defined to be at the center of the eye or face. Note that these gaze estimation
approaches can also be adapted to head-mounted devices such as those used in AR
and VR settings, though we do not discuss them in this chapter [23].

Estimating the gaze position of a user is a challenging task. Subtle movements of
the eyeball can change the gaze direction dramatically and the difficulty of the task
varies greatly across people. Reliably determiningwhere a user is looking on a screen
or inside a room has been an active research topic for several decades. Classic gaze
estimation methods often use high-resolution machine vision cameras and corneal
reflections from infra-red illuminators to determine the gaze direction [16]. These
methods can provide reasonable gaze estimation accuracy of around one degree after
personal calibration in well-controlled environments. However, dedicated hardware
is essential for their performance, which limits their use in real-world applications.

The rise of AI methods, such as deep learning approaches, has advanced the use
of learning-based gaze estimation methods. In contrast to classic methods, learning-
based methods are based on purposefully designed machine learning models, for
example, neural networks, for the gaze estimation task. These learning-based meth-
ods either estimate the gaze position directly from an image of the user’s eye or
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face [24, 56, 61], or derive intermediate eye features for gaze direction regres-
sion [33, 47]. This group of methods often assume an unmodified environment.
That is, no additional infra-red illumination is available to provide reflections on the
surface of the cornea. Hence, learning-based gaze estimation methods can work with
a single off-the-shelf webcam [33, 34, 36, 55, 56]. This makes these approaches
more widely and more easily applicable for human-computer interaction (HCI) in
everyday settings [54, 57].

Still, many challenges persist in making gaze tracking practicable for computer
interaction. For example, personal calibration plays a major role in gaze estimation
and also has an impact on user experience. The calibration procedure often requires
users to focus on designated points for a period of time. This can be cumbersome or
in some cases even impossible and disturbs the user experience. Nevertheless, per-
sonal calibration is crucial for many gaze estimation methods to perform accurately.
Thus, recently researchers have built on AI-based techniques for gaze redirection to
generate additional eye images for personalization and thus reduce the number of
calibration samples [51]. Other researchers have worked on providing easy-to-use
software toolkits for making learning-based gaze estimation methods accessible to
HCI researchers and developers [59].

Designing useful and usable gaze-aware interfaces is another major challenge. In
practice, tracking accuracy and precision vary largely depending on factors such as
the tracking environment, user characteristics, and others [7]. In comparison tomouse
or touch input, eye tracking might yield a highly noisy signal with poor accuracy.
Still, information about eye gaze, even from noisy data, can enable novel and useful
interactions. However, design guidelines developed for traditional interfaces cannot
be applied here. Instead, we need new design approaches making efficient use of the
noisy gaze signal.

In this chapter, we first provide some background on the problem of gaze tracking.
We then offer an overviewof recent approaches toward improving performance on the
gaze estimation task with the power of AI. We then discuss the practical challenges
when applying gaze estimationmethods for computer interaction and designing gaze-
aware interfaces, offering concrete design guidelines and actionable insights for the
HCI community. Finally, we describe two application examples: (1) gaze-aware
interaction with real-life objects and (2) automatic interface adaptation by assessing
information relevance from users’ eye movements. These examples showcase the
exciting opportunities gaze tracking offers for Human-Computer Interaction.

2 Background

In the following, we start with a brief introduction to the human eye, its movements,
and the relation to human attention. We then discuss different categories of gaze
estimationmethods and introduce learning-basedmethods. Lastly, we briefly discuss
the need for the personal calibration of gaze estimators and how this has been done
in existing works.
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2.1 The Human Eye Gaze

The human visual field is about 114◦ [20] large ofwhichwe can only see sharply in an
area of 1◦ [2] during so-called fixations, when the gaze is focused on a fixed position
in the environment. To perceive information from a larger area, the eyes perform
saccades, fast ballistic movements that allow us to move between fixation points to
integrate information from other areas. See, for example, [40] for further introduction
into the working principles of the human eye gaze. The duration and frequency of
such fixations and saccades can provide information about a user’s attention. It can
be used by interactive systems in combination with their awareness of the visual
stimulus or interface to enable explicit gaze input or make further inferences about
a user’s cognitive state.

However, a person does not always consciously control their eye gaze. Often, it is
stimulus-driven and attracted by visual features, or “idles” in uninteresting regions.
Thus, there is a difference between the eyes focusing on a point and a person’s
covert attention (i.e. their mental focus). Even when focusing on a certain point,
people can shift their conscious attention within the larger field of view similar to a
spotlight and to some extent independent of the gaze position. This allows them to
not just passively perceive information but visually process and encode it for further
cognitive processing [39]. A major challenge for using gaze for HCI is to isolate and
analyze the underlying cognitive processes from such noisy gaze behavior where
overt and covert attention are mixed. In the later part of this chapter, we describe
some applications that aim to make sense of noisy gaze behavior [7, 54].

2.2 Gaze Estimation Methods

The gaze estimation methods considered here try to infer information about where
a person is looking from an image of the users’ eyes or face image. They can be
categorized into three groups: model-based, feature-based, and appearance-based
methods [16]. In both model- and feature-based methods, key landmarks are often
required to bedetected, such as the pupil center, eye corner, and iris contour.Generally
speaking, model-based methods fit a pre-defined 3D eyeball model to the detected
eye landmarks and take the direction from eyeball center to the pupil center as
the gaze direction [48, 49]. The eyeball model can optionally incorporate an offset
parameter which can be determined with personal calibration data [46]. Feature-
based methods take eye-region landmarks as features for the direct regression of
gaze direction [41]. Since the input feature dimension is limited by the number of
determined key points, these methods often cannot handle complex changes such as
large headmovements. Bothmodel-based and feature-basedmethods conventionally
demand accurate eye landmark detection, often necessitating complex or expensive
hardware setups. For example, multiple high-resolution infrared-light cameras along
with optimal infrared-light sources are the standard hardware configuration for most
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of these methods. Appearance-based methods directly learn the mapping from the
eye or face image to the gaze direction [44]. Since there is no need for explicit eye
landmark detection (and corresponding training data annotation in the real world),
appearance-based methods can work with a single webcam without any additional
light source. However, these methods can be sensitive to illumination condition
changes or unfamiliar facial appearances due to the scarcity of training data.

2.3 Learning-Based Gaze Estimation Methods

Recent developments in deep learning have given rise to a large array of promising
learning-basedgaze estimationmethods.We refer to thesemethods as being learning-
based, in order to encompass hybrid methods [34, 50] as well as appearance-based
methods that benefit from large amounts of training data and highly complex neu-
ral network architectures [24, 53]. In particular, appearance-based gaze estimation
methods work with just a single webcam under challenging lighting conditions even
over long operating distances of up to 2 m [10, 59]. This is because deep convolu-
tional neural networks—when given large and varied amounts of training data—are
effective at defining useful image-based features, and thus often outperform hand-
defined features. Importantly, this allows for the new task of person-independent gaze
estimation. That is, a generic learning-based gaze estimation model can be directly
applied to a previously unseen user and achieve 4◦–6◦ of mean angular error even in
very challenging conditions.

Integrating known priors such as the 3D structure of the eyeball or eyelids into
neural networks is a promising direction of research. A hierarchical generativemodel
has been proposed for improving gaze estimation by understanding how to control
and generate eye shape [47]. A so-called gazemaps representation has been used to
implicitly encode a 3D eyeball model and then taken as an intermediate output for
gaze direction regression [33]. Applying deep learning-based landmark localization
architectures for eye-region landmark detection has also been shown to be more
effective than traditional edge- or contour-based methods [11, 34].

2.4 Person-Specific Gaze Estimator Calibration

While learning-based methods perform well in the person-independent setting, the
error of 4◦–6◦ may be unsuitable for applications that require higher accuracy. When
sufficient data is provided from the target user, such methods were shown to perform
at an average gaze estimation error of 2.5◦ in-the-wild [56]. Reducing this perfor-
mance gap increases the efficacy and applicability of learning-basedmethods greatly.
In this section, we describe why this performance gap exists and discuss how recent
learning-based methods reduce it.
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A primary reason for this performance gap is the so-called “angle kappa” as the
angular difference between the line-of-sight of a user (actual axis along which an
eye “sees”) and the optical axis of their eyeball (defined by the geometry of the
head and eye). For a more principled definition of angle kappa, please refer to [29].
This difference varies greatly across people with typical differences being two–three
degrees [29]. Importantly, the line-of-sight cannot be measured by a camera alone
as it is defined by the position of the fovea, which cannot be observed. The optical
axis, on the other hand, can be reasonably estimated from the appearance of the eye
region.

The classic literature tackles this issue by explicitly defining the kappa angle as
a parameter to an optimization problem. In all gaze estimator calibration methods, a
user is asked to gaze at specified points on a screen or in space.An optimization-based
scheme is then often applied to determine the user-specific parameters of the model.
An important consideration in these schemes is in requiring minimal “calibration
samples” from the end-user such as tomake the experience less cumbersome and also
to enable spontaneously interactive applications in everyday scenarios. Conventional
approaches are quite effective in clean and controlled laboratory settings where the
position and shape of the iris and eyeball can be reasonably measured. In-the-wild
settings and unconstrained head movements of the user, however, pose significant
challenges that learning-based methods can easily address. However, learned models
can be tricky to adapt as user-specific parameters are usually not explicitly defined.

Several feasible calibration strategies have been suggested recently for learning-
based gaze estimation, either via optimization of user-specific parameters defined
at specific parts of the network or via eye-region image synthesis for personalized
training data generation. The more direct and effective approaches define parameters
which canbe adapted basedon a few labeled samples from the target user.Approaches
have been proposed to apply these parameters at the input [17, 25] and output [4] of
the neural network. As the primary factor in the difference between users is the angle
kappa, such low-dimensional definitions of user parameters are surprisingly effective.
Yet other approaches have beenproposed for learning a light-weight regressionmodel
from penultimate layer activations [24, 34], or gradient-based meta-learning as a
method for effective few-shot neural network adaptation [35]. A unique approach
suggests correcting an initially estimated gaze direction based on changes in the
appearance of the presented visual stimuli [36]. Importantly, this approach does not
require any explicit calibration but instead relies on the model having been trained
on paired eye gaze and visual stimulus data.

An alternative area of research is in “gaze redirection”, where the objective is in
accurate and high-quality eye image generation with control of gaze direction.While
earlier learning-basedmethods in this area focused only on the image synthesis aspect
[13], later works have shown that generating person-specific eye images with varying
gaze directions can allow for an alternative method of personal calibration. That is,
given a few samples from the target user, gaze redirection methods can be used to
create a training dataset tailored to the target user [51]. Though not directly related
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to personal calibration, later works [18, 62] have further improved the accuracy
and quality of generated images and have shown that limited gaze datasets can be
augmented via such synthesis schemes.

3 Learning-Based Gaze Estimation Methods

We refer to “learning-based gaze estimation methods” as the set of methods that
take advantage of modern machine learning techniques for the gaze estimation task.
Nowadays, these are mostly enabled by deep learning techniques together with a
large amount of training data. The input to these methods are monocular images
of the eye or face region, and the models either directly estimate eye gaze, extract
intermediate features for the gaze task, or otherwise work toward the improvement of
gaze estimation performance via approaches such as data synthesis. Such strategies
have been advancing rapidly with the recent development of convolutional neural
networks. Alongside, several datasets have been introduced covering an increasingly
wider variety of human appearances and temporal information to improve general-
ization and provide novel challenges to existing data-driven models.

3.1 Gaze Estimation Method Pipeline

The gaze estimation method we proposed in [53] was the first work to use a convo-
lutional neural network architecture for gaze estimation. Our later works extended
the architecture to much deeper networks such as VGG-16 and ResNet-50 [56, 60].
These works introduce a basic pipeline for image-based gaze estimation. That is,
given an input image taken from a single webcam, we learn a direct mapping to the
gaze direction (see Fig. 2). The first step in this pipeline is face detection and facial
landmark localization. Then, we fit a pre-defined 3D facemodel to the detected facial
landmarks to estimate the rotation and translation of the head. With this head pose
information, we perform a procedure known as “data normalization” to cancel the
rotation around the roll-axis and crop the eye or face image to a consistently defined
size [43]. This data normalization procedure was later optimized further to increase
its effectiveness toward improving gaze estimation performance [58]. Finally, the
cropped image, together with the head pose, is fed into the convolution neural net-
works to regress to the final gaze direction in the camera coordinate system. The
gaze direction can be presented as a three-dimension vector in the Cartesian coor-
dinate system. We choose to convert it to a two-dimensional vector in the spherical
coordinate system representing the polar angle and azimuthal angle. In this way, we
reduce one degree of freedom from the gaze direction vector and center the output
values around zero, for better ease of regression.
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Fig. 2 The gaze estimation pipeline proposed in [56] describes a pre-processing procedure for
extracting eye patches which are then input to a convolutional neural network that directly predicts
the gaze direction of the imaged eye

3.2 3D and 2D Gaze Estimation

The final output of the pipeline shown in Fig. 2 is a 3D gaze direction value. Alterna-
tively, a different group of methods directly output the 2D gaze location on a screen
that the user is assumed to be gazing at. See [55] for an example of experiments
directly comparing between 2D and 3D gaze estimation. Apart from a change in the
dimensionality of the output value, 3D and 2D gaze estimation differ in practice in
terms of how the head position is integrated into the estimation pipeline. 3D gaze
estimation methods typically insert the 3D head orientation value (often referred to
as head pose) directly into the network as input to one of the last fully connected
layers. The task of 2D screen-space point-of-regard regression (2D gaze estimation),
however, theoretically requires more complex information such as the definition of
the pose, scale, and bounds of the screen plane as well as a reliable estimation of the
translation of the head in relation to the screen. This can be approximated by pro-
viding a binary “face grid” where the number of black pixels (as opposed to white
pixels) indicates the size and position of the user’s face [24]. While this alternative
2D problem formulation tackles the gaze estimation task more directly, its main
drawback is that the trained model is specific to the device used in the training data.
Hence, 2D models are not robust to changes such as the camera hardware, screen
size and pose, and other factors pertaining to the camera-screen relationship. 3D
gaze direction estimation is thus a more generic approach that can consolidate data
samples from different devices both at training time and test time.

3.3 Input for Gaze Estimation Methods

Early works in gaze estimation only take a single eye image as input since it is
often deemed to be sufficient in inferring gaze direction [43, 53]. However, learning-
basedmethods can be surprisingly effective in extracting information from seemingly
redundant image regions and thus regions beyond the single eye could be helpful for



Eye Gaze Estimation and Its Applications 107

training neural networks. Taking a face image along with both eye images [24] or
simply the two eye patches [5, 10] as input for gaze estimation can achieve better
performance than a model taking single eye input. We were the first to use a single
full-face image as input for the gaze estimation task [55] showing that this achieved
the best results compared to other kinds of input regions. Furthermore, to fully use
the information of the full-face, we proposed a soft attention mechanism [55] and
a hard attention mechanism [61] to efficiently learn information from the full-face
patch. In [55], we allow the neural network to self-predict varying weights for dif-
ferent regions of the input face in order to make model training efficient. However,
in contrast to object classification tasks where the scale of activation values of each
feature map is correlated to the importance of a template or object class, gaze estima-
tion as a regression task can benefit from an attention mechanism that goes beyond
activation value modulation. Our later work proposes a hard attention mechanism to
force the model to focus on the sub-regions of the face [61]. Taking a full-face patch
as input, our method first crops sub-regions with multiple region selection networks.
These sub-regions are then passed as input to the gaze regression network which
predicts gaze direction. Since each sub-region is resized to be the same as the origi-
nal input face image, the receptive field is enlarged, thus, the gaze regression model
can extract large and informative feature maps from the sub-regions. This method
successfully picks the most appropriate eye region for gaze estimation depending
on different input image conditions such as occlusion and lighting conditions. How-
ever, the model itself can be difficult to train and take much time to converge. How to
efficiently learn the information from the full-face patch is still an ongoing research
topic.

3.4 Representation Learning for Gaze Estimation

In addition to studying various methods of input region selection for gaze estima-
tion, we also suggest various approaches to learning unique gaze-specific representa-
tions in neural networks. Such representations can be explicitly defined or implicitly
learned. The first representation as proposed in [34] is explicitly defined as being
eye-region landmark coordinates. The fully convolutional network proposed in this
work is able to detect eye-region landmarks from images captured with a single
webcam, even under challenging lighting conditions. Compared to the classic edge-
based eye landmark detection method [16, 48], the convolutional network provides
more robust landmark prediction. These detected landmarks are then used for model-
based or feature-based gaze estimation. However, since it still requires eye landmark
detection, this method can only work in settings with a close distance between the
user and camera such as the laptop and desktop setting [59] and relies on high-
quality synthetic training data. We further improve our method by first predicting
a novel pictorial representation that we call a “gazemap”, then use it as input for a
light-weight gaze regression network [33]. In this work, the proposed method lever-
ages the power of hourglass networks to extract this image-based “gazemap” feature



108 X. Zhang et al.

which is composed of silhouettes of the eyeball and the iris. It is an abstract, picto-
rial representation of eyeball structure which is the minimally essential information
necessary for the gaze estimation task. The gazemap representation is not explicitly
correlated with key landmarks in the input eye image and can be generated from the
3D gaze direction labels. Hence, the latter approach can be applied to models that
need to be trained directly on real-world data. The alternative is to train on synthetic
data, which can result in a model that does not perform sufficiently well due to the
domain gap between synthetic and real data domains.

3.5 Gaze Estimation Datasets

To train a generic gaze estimator that can be applied to a large variety of conditions
and devices, it is critical that learning-based gaze estimationmethods are trainedwith
datasets that have good coverage of real-world conditions. Unless the model has had
a chance to encounter data with large variations, it could suffer due to over-fitting to
themore limited training data and perform in unexpected ways outside of the original
data regime. Essentially, we should not expect learned models to handle samples that
are out-of-distribution. Specifically, for assessing a dataset for the gaze estimation
task, there are several factors that should be considered, such as the range of gaze
direction, range of head poses, diversity of lighting conditions, variety of personal
appearances, and input image resolution.

Early datasets mainly focus on the head pose and gaze direction coverage under
controlled lighting conditions such as UT-Multiview [43] and EYEDIAP [12]. Our
MPIIGaze dataset, as the first of its own kind, brought the task of gaze estimation out
from the conventional and controlled laboratory setting out into the real-world setting
which covers different lighting conditions [53, 56]. This was done by installing a
data recording software on 15 participants’ laptop computers and prompting the
participant every 10 min to ask for 20 gaze data samples. In this task, participants
were asked to look at dots on the screen as they appear, then press the space button to
confirm that he/she was looking at the dot. In this way, we could record the dot that
the participant was looking at, and at the same time, the position of the on-screen
dot was stored, along with an image of the participant’s face taken with the built-in
camera of the laptop. Since the data samples were collected without restriction on
location and time, we were able to collect samples under many different lighting
conditions with natural head movement. However, since the MPIIGaze dataset was
collected with laptop devices, the head pose and gaze direction ranges are limited
to the size of typical laptop screens. Therefore, models trained only on MPIIGaze
data may not apply well to settings with larger displays and viewing distances, for
example, participants gazing at a TV in a public space.

Such limitation by the capture device appears in many existing datasets. Similar
to our MPIIGaze, the GazeCapture dataset limited itself with small ranges of head
poses and gaze directions due to using mobile phone and tablet devices for data
collection [24]. The EYEDIAP dataset is designed specifically for head poses and
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XGaze GazeCapture MPIIGaze RT-GENEEYEDIAP Gaze360

Fig. 3 Head pose (top row) and gaze direction (bottom row) distributions of different datasets.
The head pose of Gaze360 is not shown here since it is not provided by the dataset. The figure is
adapted from [60]

gaze directions of the desktop setting [12]. The RT-GENE dataset tried to use a
head-mounted eye tracker to provide accurate gaze direction ground-truth and large
spatial coverage of head poses and gaze directions [10]. The recent Gaze360 dataset
used a moving camera to simulate different head poses [21]. However, the image
and ground-truth quality were not guaranteed with these datasets, and the coverage
of head poses and gaze directions was not properly designed.

We provide the ETH-XGaze dataset consisting of over onemillion high-resolution
images of varying gaze directions under extreme head poses [60]. This dataset was
collected with a custom setup of devices including a screen to show visual content
from a projector, four lighting boxes to simulate different lighting conditions, and
18 digital SLR cameras which can capture high-resolution (6000 × 4000 pixels)
images. The cameras were arranged such as to cover different perspectives of the face
of the participant, effectively making each camera position correspond to one “head
orientation” in the final processed dataset. Since the participant was placed close
to the screen, a large range of gaze directions was captured during each recording
session. A comparison of head pose and gaze direction ranges is made between our
ETH-XGaze dataset and other datasets in Fig. 3. From the figure, we can see that
our ETH-XGaze dataset provides the largest range of head poses and gaze directions
compared to previous datasets. ETH-XGaze is a milestone toward providing full
robustness to extreme head orientations and gaze directions and should enable the
development of interesting novel methods that better incorporate understandings of
the geometry of the human head and the eyeball within.

In addition to exploring the spatial dimension with the 18-camera ETH-XGaze
dataset, we chose to explore the temporal dimension of gaze tracking in an end-
to-end fashion. That is, we aimed to go beyond the static face images provided by
most gaze estimation datasets by providing video data. In addition, we observed
that when humans gaze at objects or other visual stimuli, their eye movements are
often correlated with particular changes or movements in the stimuli. Yet, no large-
scale video-based dataset exists to relate the change in the appearance of the human
directly to a video of the visual stimulus. To fill this gap, we proposed another novel
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(a) Collection Setup

Machine Vision Camera Webcam (Left)

Webcam (Center) Webcam (Right)

(b) Sample frames (each 1080p)

Fig. 4 EVE data collection setup and example of (undistorted) frames collected from the 4 camera
views with example eye patches shown as insets [36]

dataset called EVE to provide temporal information of both the human face and
corresponding visual stimulus for improving the temporal gaze estimation task [36].
The EVE dataset was recorded with four video cameras facing the participants, with
various visual contents shown on the screen. The custom multi-view data capture
setup and example frames are shown in Fig. 4. The custom setup synchronized
information from three webcams running 30Hz, onemachine-vision camera running
60Hz, and one Tobii Pro Spectrum eye tracker running 150Hz. A large variety
of visual stimuli were presented to our participants including images, videos, and
Wikipedia web pages. We ensured that each participant observes 60 image stimuli
(for 3 s each), at least 12min of video stimuli, and 6min ofWikipedia stimulus (three
2-min sessions). To our understanding, EVE is the first dataset to provide continuous
video recordings of both the user and the visual stimuli while the user is free-viewing
the presented visual stimuli.Alongside the dataset,we propose amethodwhich shows
that when a video of the user and screen content are taken as input, it is possible to
correct for biases in a pre-trained gaze estimator by relating changes in the screen
content with eye movement. Effectively, this allows for calibration-free performance
improvements, finally yielding 2.5◦ of mean angular error.

3.6 Comparison of Learning-Based and Commercial Gaze
Estimation Methods

Learning-based gaze estimation methods have developed rapidly and now begin
to challenge classical methods. However, an accurate comparison of different gaze
estimationmethods is not a trivial task since they have different requirements in terms
of capture hardware and lighting conditions. In [59], we compared three typical gaze
estimation methods including two of our webcam-based methods [34, 55] and the
commercial Tobii EyeX eye tracker on data collected from 20 participants. Our
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method proposed in [34] uses a neural network to predict eye-region landmarks
which are then used for model-based gaze estimation. Our method proposed in [55]
directly learns the mapping from the input face image to the gaze direction with a
neural network as an appearance-based method. We do not know what exact method
the commercial Tobii EyeX eye tracker uses for gaze estimation and calibration.

We mounted both a webcam and the Tobii EyeX below a screen, and then asked
participants to look at displayed point stimuli from different distances to the screen.
In this way, we collected the gaze direction ground-truth of the participants. We
resized the region on the screen to show the visual stimuli according to the differ-
ent distances such that gaze direction ranges for each distance were the same. We
recorded 80 samples of which the first 60 were for personal calibration and the rest
(20 samples) were for testing. The data collection setup was designed to be highly
controlled to allow for a reliable comparison of performance across different gaze
estimation methods for varying amounts of user-camera distances and the number
of gaze tracker calibration samples. This was done by fixing the lighting conditions
in the environment, asking the participants to keep their heads relatively still, and
collecting the calibration and test samples in a single session.

Themain results of our comparison are shown in Fig. 5. From the figure on the left,
we can see that our model-based method [34] can work well for close distances while
it becomes much worse when the distance between the user and camera increases.
This is because this method relies on accurate estimations of eye-region landmarks.
The Tobii EyeX eye tracker achieves the best performance (with the lowest gaze
estimation error) since it has dedicated hardware including high-resolution cameras
and active lighting sources.However, our appearance-basedmethod [55] provides the
robust gaze estimation performance across different distances between the user and
camera. Thismeans that the appearance-based gaze estimationmethod can be applied
tomanymore applications, for example, room-level human attention estimation from
cameras placed far away from the users. On the right of Fig. 5, we can see that the

(a) Collection Setup

Fig. 5 Gaze estimation errors of different methods in degrees across distances between the user
and camera (left), and a number of samples for the personal calibration. Dots are results averaged
across all 20 participants and we linked them by lines [59]
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three approaches only need a few personal calibration samples to reach reasonable
accuracy. However, the number of necessary calibration samples may increase for
real-world applications compared to this simple setting.

4 Making Gaze Tracking Practicable for Computer
Interaction

Applying webcam-based gaze estimation methods to real-world interactive appli-
cations poses practical challenges. One of the key issues is that collecting personal
calibration data is tedious for the user. However, without it the gaze estimation accu-
racy is poor. Even after personal calibration, the predicted gaze positions often show
a large amount of noise, also for commercial eye trackers. Therefore, using gaze for
interaction requires carefully designed user interfaces (UI) that take into account this
potential noise and thus the uncertainty of the input signal. Otherwise, it results in a
bad user experience or interaction is not even possible.Another problem is that, unlike
existing commercial eye-tracking devices that can be directly used out-of-the-box,
learning-based methods are still under development and may not lend themselves
as simple solutions for novice users. In this section, we discuss our efforts toward
making gaze tracking practicable for human-computer interaction.

4.1 Personalizing Gaze Tracking Methods

In principle, there are two main challenges for learning-based gaze estimation meth-
ods caused by personal differences. The first one is the kappa angle which varies by
around two–three degrees on average across people [29]. The second challenge is
personal eye appearance differences such as the shape of the eye and color of the iris.
The eye appearance is also affected by changes in gaze directions and head poses,
which is further connected to the image capturing or personal computing device. For
example, a gaze estimator trained on images captured on a smartphone device that is
held closer to the user may not perform well when directly applied to a large public
display such as an advertisement board in a shopping mall. This could be caused by
loss of image resolution and quality and unfamiliar head poses during operation. Due
to these challenges, learning-based methods may benefit from further adaptation in
challenging conditions that are not covered by the training data.

A basic experimental observation is that increasing the number of dataset partici-
pants results in improved general gaze estimation performance [24]. That is, learning
from more peoples’ data allows for a method that generalizes better to previously
unknown users. However, as introduced in Sect. 2.4, there still exists a large perfor-
mance gap that can be recovered when using just a few samples from the final target
user to adapt learned models.
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Nevertheless, collecting personal calibration data is still an effective way for good
gaze estimation performance. In our work [57], we proposed to use multiple types of
devices to collect samples for specific users, then aggregate all of these samples to
train a joint model for that specific user across devices. The intuition behind this work
is that the personal appearance should be the same for different devices which we
can learn with the shared layers in the middle of our model. Our approach can benefit
applications that are expected to be used by a user over a long period of time and
across multiple devices, with personal calibration data being collected occasionally.

An alternative and promising method of increasing the amount of training data
for specific persons is generative modeling. Given a few labeled samples, a high-
quality generative model would be able to create tailored training data from which
a robust yet personalized gaze estimation model could be learned. Our first work in
this direction used an architecture based on CycleGAN [63] for realistic eye image
generation, where gaze direction is provided as an input condition to the network,
and training is supervised via perceptual and gaze direction losses [18]. Although this
method is successful at generating photo-realistic images of the eye, it is not aware
of head orientation and cannot easily be trained with noisy real-world images. We
later proposed a transforming encoder-decoder architecture to tackle these issues,
where features pertaining to gaze direction, head orientation, and other appearance-
related factors are explicitly defined at the bottleneck of the autoencoder [62]. To
truly enable training on in-the-wild datasets, we allow for the definition of implicitly
defined “extraneous” factors at the bottleneck.The reconstructionobjectives allow for
these extraneous factors to encode information that is task-irrelevant yet allows for the
satisfaction of the image-to-image translation objective. This approach, in particular,
was shown to improve performance in the person-independent cross-dataset setting,
but with further development, it should be possible to demonstrate improvements in
the personalizing of gaze trackers. While personalized data collection is a promising
and active direction of research, much work is yet needed for it to be effective.

Alternatively, our other research works show that learning-based gaze estima-
tor calibration is definitely possible with tens of samples using simple regression
schemes and with as few as one to three samples when using a more advanced meta-
learning scheme. By defining input features using eye-region landmarks detected
by a fully convolutional neural network, we show that a support vector regression
model is capable of improving performance significantly with as few as 10 calibra-
tion samples. An appearance-based gaze estimator taking full-face input images was
shown to be effective in tandem with a simple polynomial regression scheme taking
point-of-regard as input, resulting in less than 4◦ of error with just 4 calibration sam-
ples [59], albeit in controlled experimental settings. When training on real-world
data, a transforming encoder-decoder architecture coupled with a gradient-based
meta-learning scheme was shown to be highly effective, with as few as one to three
calibration samples yielding close to 3◦ of error on challenging in-the-wild datasets
[35]. The code for the latter two systems is open-source and thus contributes toward
effecting real improvements with regards to the applicability of learning-based gaze
estimation methods to HCI applications.
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Fig. 6 Accuracy and precision of gaze tracking vary largely across users. Values increase steeply
for different percentiles of users both in x- and y-directions

4.2 Design of Robust Interfaces

The estimated gaze data can be highly noisy and inaccurate. Nevertheless, it can
be used for computer input, to improve user experience or otherwise enable new
interaction if potential noise is taken into account during the design of gaze-aware
interfaces. To this end, we have studied tracking performance in practical setups to
derive design guidelines and actionable insights for the design of robust gaze-aware
interfaces.

In [7],we collected eye-trackingdata of 80people in a calibration-style task,where
participants were asked to fixate randomly positioned targets on the screen for 2 s.We
used two different eye trackers (Tobii EyeX and SMI REDn scientific, both 60Hz)
under two lighting conditions (closed room with artificial lighting, room with large
windows facing the tracker) in a controlled but practical setup. In contrast to many
lab studies, we did not exclude any participant due to insufficient tracking quality.
Instead, we were interested in learning about the possible variations in tracking
accuracy (the offset from the true gaze point) and precision (the spread of tracked
gaze points). These could be due to the independent variables of our study (lighting,
tracker, screen regions), as well as due to external factors that we did not control but
that are typical for real-life setups (participants wearing glasses or mascara, varying
eye physiology, etc.).

The collected data reveals large variations of tracking quality in such a practical
setup. Figure 6 shows the average accuracy and precision across all focused targets
for different percentiles of participants. Very accurate fixations (25th percentile) are
only 0.15 cm in the x-direction and 0.2 cm in the y-direction offset from the target. On
the other hand, inaccurate fixations (90th percentile) can be as far offset as 0.93 cm
in the x-direction and 1.19 cm in the y-direction—a more than six-fold difference—
similar to the spread of the gaze points. Additionally, we found the precision of the
estimated gaze points to be worse toward the right and bottom edges of the screen, as
shown in Fig. 7. The ellipses represent the covariance matrix computed over all gaze
points from all participants. In contrast, we found no significant variation across the
screen for accuracy.
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Fig. 7 The precision of the
estimated gaze points varies
for different screen regions.
For each target, the ellipse
shows the 2D Gaussian
distribution fitted to the
estimated gaze points of all
participants fixating that
target [7]

With data from such a calibration-style task, we can derive appropriate sizes for
gaze targets, i.e. the regions in a UI that recognize if the user’s gaze falls inside its
borders. Given the gaze points belonging to a fixation, we can assume they are nor-
mally distributed in x- and y-directions independently, with an offset Ox/y (accuracy)
from the center of the fixated target and a standard deviation σx/y (precision). From
these, we can compute the necessary width and height for a gaze-aware element to
be usable under such tracking conditions with the following equation:

Sw/h = 2(Ox/y + 2σx/y) (1)

Multiplying σx/y by 2 results in about 95% of gaze points falling inside the target,
according to the properties of a normal distribution. While this seems conservative,
an error rate of more than 5% (every 20th gaze point falling outside the target area)
might slow down performance and lead to errors that can be hard to recover from.
Figure 8 visualizes the size computation and shows two example cases with good
and bad tracking quality. In [7], we give explicit target sizes for different percentiles
of users. They vary from 0.94 × 1.24 cm for users that track well (25th percentile)
up to 5.96 × 6.24 cm if we want to allow robust interaction for nearly all users in
the dataset (90th percentile).

Target sizes can be significantly reduced if the gaze data is first filtered to remove
noise artifacts and reduce signal dispersion. However, in contrast to laboratory stud-
ies, interactive applications cannot post-process the gaze data but must filter it in
real time. This makes the recognition of outliers and artifacts difficult since it can
introduce delays of several frames. Gaze filters must also account for the quick and
sudden changes between saccades and fixations. In contrast, eye tremors, microsac-
cades, and noise should be filtered in order to stabilize the signal and improve preci-
sion. This makes commonly used methods, such as moving average, Kalman filter,
or Savitzky-Golay filter, less useful [45].

The choice of the filter and its parameters can be seen as a trade-off between the
target size required for robust interaction and the signal delay in following a saccade.
In [7], we proposed a method to optimize the parameters for any filter given gaze
data from a calibration-style data as described earlier. In a grid search, it instantiates
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Fig. 8 Using the accuracy (Ox/y) and precision (σx/y) of the estimated gaze points belonging to
a fixation, we can compute target sizes that would allow for robust interaction with an interface.
The plot shows examples from fixations of two different users one with good and one with poor
tracking quality [7]

a filter with each possible parameter, computes the resulting target size after filtering
the data, and simulates saccades between such targets to determine any signal delay.
The result is a Pareto front of parameter combinations that yield the minimum target
size for a specific delay.

Using this method, we compare five commonly used gaze filters with three differ-
ent kernel filters: the Stampe filter, the 1e filter, a set of weighted average filters with
linear, triangular, and Gaussian kernel functions, an extension with saccade detec-
tion, and one with additional outlier correction. See [7] for a description of each
filter. The filters differ in the trade-offs they achieve for target size and signal delay.
Generally, we found that a weighted average filter with a saccade detection performs
best in terms of target size when signal delay should be short (up to one frame or
32 ms with 30Hz tracker). The best performance is achieved with additional outlier
correction at the cost of 2–2.5 frames delay.

The use of a filter with optimized parameters can reduce the target sizes by up to
42% (see Table 1). However, the filter can only improve the precision of the data,
not its accuracy. Simulation based on real data yields important insights into the
effect of filters on the signal. Filters that by design should not introduce any or only
a short signal delay, in practice, introduce much larger delays to the gaze signal. For
example, depending on the noise and set parameters, it may wrongly detect saccades
as outliers or as part of fixation and either remove them or heavily smooth the signal.
In such cases, an additional delay occurs before the filtered signal follows a saccade
to a new fixation point. See [7] for an in-depth discussion of the tested filters.

We can summarize our analysis in a set of concrete design guidelines for gaze-
enabled applications:

• Target sizes of at least 1.9 × 2.35 cm allow for reliable interaction for at least
75% of users if optimal filtering is used.
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Table 1 Recommended target sizes for robust interaction by eye gaze. The values for raw and
filtered show the improvement that can be achieved by filtering the gaze data. The percentiles show
how much target sizes can vary for different levels of tracking quality [7]

Width (cm) Height (cm)

Raw Filtered Improv Raw Filtered Improv

Overall 3.0 2.02 33% 3.14 2.19 30%

Percentile

25% 0.94 0.58 38% 1.24 0.8 35%

50% 1.8 1.12 38% 2.26 1.48 35%

75% 3.28 1.9 42% 3.78 2.35 38%

90% 5.96 3.9 35% 6.24 4.24 32%

• Target dimensions should take into account the larger spread of gaze points in
the y-direction we observed. Thus, the height should be somewhat larger than the
width.

• Visual representation of elements can be smaller inwhich case the element should
have a transparent margin that is also reactive to the user’s gaze.

• Placement of targets should avoid the bottom or right edge of the screen, for which
accuracy and precision were found to be significantly worse.

• Filter gaze points using a weighted average filter (over 36/40 frames in x/y direc-
tion) with a Gaussian or Triangular kernel and saccade detection (threshold of
1.45/1.65cm in x/y direction). Additional outlier correction can further improve
precision but at the cost of a two-sample delay.

4.3 Make Single-Webcam-Based Methods Accessible for HCI
Researchers

To allow learning-based gaze estimation methods to be used out-of-the-box in a
similar manner to commercial eye trackers, we published OpenGaze.1 OpenGaze
includes the entire gaze estimation pipeline, beginning from the acquisition of a
single RGB image to the prediction of the gaze direction in the camera coordinate
system. Therefore, it can be used with just a single webcam as the input device.
OpenGaze is based on the appearance-based method in [55] that directly learns the
mapping from input face image to the gaze direction without explicit eye landmark
detection. Therefore, it is particularly effective when the distance between the user
and camera is high. The full description of OpenGaze and evaluation can be found
in our paper [59].

1 http://www.opengaze.org.

http://www.opengaze.org
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We also publish GazeML2 which is a demonstration of the approach in [34].
It uses stacked-hourglass networks to predict eye-region landmark heatmaps and an
estimate of gaze direction. As it was only built for demonstrative purposes, its outputs
are not suitable for actual gaze estimation nor can the software be easily adapted for
HCI applications. Yet, it is an interesting demonstration of the possibility of real-time
gaze estimation using deep convolutional neural networks.

5 Applications

Eye tracking provides information on where a user is looking, the dynamics of the
gaze behavior, or the simple presence of the eyes on anobject or screen. Such informa-
tion offers a range of opportunities for computer interaction (see, for example, [28]).
On the one hand, explicit eye input allows controlling an interface by fixating the
corresponding UI elements or executing a prescribed series of fixations, saccades,
or smooth pursuits. This requires users to consciously control their eyes which can
be difficult but useful when other input modalities are not available or impractical.
Explicit gaze input is used, for example, in virtual or augmented reality applica-
tions [19, 22] or to enable interaction for people with motor impairments [27]. On
the other hand, attentive interfaces use information about the natural gaze behavior of
users often without them noticing. They can obtain insights on the user’s experience
with an interface, their cognitive processes, their skills or struggles, and their inten-
tions or preferences [14, 26]. In this section, we focus on such attentive interfaces
that make implicit use of the gaze information. We present two applications that use
this data in different ways: (1) as a way to establish a user’s intention to interact
with a device by tracking the location of their natural gaze, and (2) for adapting the
interface to make the displayed information more relevant to a user by observing
their gaze behavior over time.

5.1 Gaze-Aware Real-Life Objects

Gaze-awareness, that is, recognizing when a user is looking at a specific element, is
an important functionality of an intelligent interactive system and the core of attentive
interaction [3]. Also in real-life settings, interactive systems can benefit from sensing
where or which object a user is looking at in their environment. However, the position
of interactive devices can be arbitrary inside a room,making it difficult to identify the
layout of multiple potential objects. In our work [54], we proposed a novel method
for user-object eye contact detection that combines state-of-the-art learning-based
gaze estimation [55] with a novel approach for unsupervised gaze target discovery,
i.e. without the need for tedious and time-consuming manual data annotation.

2 https://github.com/swook/GazeML.

https://github.com/swook/GazeML


Eye Gaze Estimation and Its Applications 119

Fig. 9 Overview of our method in [54]. Taking images from the camera as input, our method first
detects the face and facial landmarks (a). It then estimates the gaze directions p and extracts CNN
features f using a full-face appearance-based gaze estimation method (b). During training, the gaze
estimates are clustered (c) and samples in the cluster closest to the camera get a positive label while
all others get a negative label (d). These labeled samples are used to train a two-class SVM for eye
contact detection (e). During testing (f), the learned features f are fed into the two-class SVM to
predict eye contact on the desired target object or face (g)

Our method works with the assumption that the target object is the one closest to
the camera, thus, our method only requires a single off-the-shelf RGB camera placed
close to the target object.Once the camera is placed, the approach does not require any
personal or camera-object calibration . As illustrated in Fig. 9, the input to ourmethod
is the video sequence from the camera over a period of time. During the training, our
method runs the gaze estimation pipeline introduced in our work [55] to obtain the
estimated gaze direction. Assuming dummy camera parameters, the estimated gaze
direction vector g is projected to the camera image plane and converted to on-plane
gaze locations p. While the gaze estimation results are used for sample clustering,
we extract a 4096-dimensional face feature vector f from the first fully connected
layer of the neural networks.

Aswe stated in [55], the estimated gaze direction g is not accurate enoughwithout
personal calibration, and it cannot be mapped directly to the physical space without
the camera-object relationship parameter. However, it indicates the relative gaze
direction of the user from the camera position. Hence, these estimated gaze directions
can be grouped into multiple clusters corresponding to several objects in front of the
user. Given that our method assumes that the target object is the one closest to the
camera, the sample cluster of the target object is identified as the cluster closest
to the origin point of the camera coordinate system. Other clusters are assumed to
correspond to other objects, and samples from these clusters are used as negative
samples.

Labeled samples obtained from the previous step are used to train the eye contact
classifier. This is a two-class classifier that determines if the user is looking at the
target object or not in the current input frame. We use a high-dimensional feature
vector f extracted from the gaze estimation network to leverage richer information
instead of only gaze locations. Furthermore, we apply principal component analysis
(PCA) to the training data and reduce the dimension of feature vector f that the
subspace retains the 95% variance.
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Fig. 10 Examples of gaze location distribution for the object-mounted (tablet, display, and clock)
and head-mounted settings from [54]. The first row shows the recording setting with marked target
objects (green), camera (red), and other distraction objects (blue). The second row shows the gaze
location clustering results with the target cluster in green and the negative cluster in blue. The third
row shows the ground-truth gaze locations from a subset of 5,000 manually annotated images with
positive (green) and negative (blue) samples

During testing, input images are fed into the same pre-processing pipeline with
the face and facial landmark detection, and feature f is extracted from the same gaze
estimation neural networks. It is then projected to the PCA subspace, and the SVM
classifier is applied to output eye contact labels. Note that during both the training
and test phases, we neither need to label the input frame sample nor calibrate the
camera-object relationship.

To evaluate our method for eye contact detection, we collected two datasets for
two challenging real-world scenarios: office scenario and interaction scenario. The
example of the two scenarios is shown in Fig. 10. For the office scenario, the camera
is object-mounted as the camera wasmounted or placed very near to the target object,
and we aimed to detect eye contact of a single user with these target objects during
everyday work at their workplace. We recorded 14 participants in total (five females)
and each of them recorded four videos for different target objects: one for the clock,
one for the tablet, and two for the display with two different camera positions. The
recording duration for each participant ranged from three to seven hours.

In the interaction scenario (see far right of Fig. 10), a user was wearing a head-
mounted camera while being engaged in everyday social interactions. This scenario
was complementary to the office scenario in that the face of the user became the
target and we aimed to detect eye contact of the second person who talked with the
user. We recruited three users (all male) and recorded them while they interviewed
multiple people on the street.

The example of gaze location distribution for the two scenarios is shown in Fig. 10.
In the first row, we show the recording settings for the different target objects. We
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mark the target object (green rectangle), camera (red rectangle) positions, and other
distraction objects (blue rectangle) in the figure. The second row of Fig. 10 shows
sample clustering results where we mark the target cluster with green dots while
all other negative sample clusters are marked with blue dots. Noise samples are
marked as black and the big red dot is the camera position as the origin of the camera
coordinate system. The third row shows the corresponding ground-truth annotated
by two annotators.

From the second row of Fig. 10, we can see that the grouped sample clusters can
be associated with objects in front of the camera, especially for the office scenarios
as object layout is fixed. For the interaction scenario, we can observe one centered
cluster and other random distributed samples. This is due to the fact that there is
no fixed attractive object next to the user’s face. Our sample clustering method can
achieve good clustering results and successfully pick the cluster that belongs to the
target object. It can also be easily extended to include objects that are newly added
to the scene by updating the clusters. However, our method requires sufficient data
for good clustering—usually about a few hours of recording. Besides, the target
object should attract enough attention to the user, and it has to be isolated from
other objects. Nonetheless, our method provides a way of eye contact detection
with a single RGB camera without neither tedious personal calibration nor complex
camera-object relationship calibration.

5.2 Adapting a UI to Improve Information Relevance

The user’s gaze behavior can reveal whether the content displayed to a user is useful
and relevant to their current task. In particular when making a decision, showing the
right information to the user is crucial for the decision quality [31]. For example, a
user might look at the details of a product for deciding whether to buy it or check
the weather forecast to decide whether to go for a hike. If important information
is missing from an interface, a user might be affected and make a wrong decision.
On the other hand, displaying all available information might not be effective due
to device constraints (e.g. on a small screen of a mobile phone) or because it might
lead to information overload and a bad user experience. What makes the design of
such interfaces challenging is also that users perceive the relevance of information
differently [30], an aspect that cannot be foreseen at design time but must be detected
and accounted for at run-time. However, the challenge is how to infer the relevance
of the displayed information online, without having to interrupt users in their task.

Eye gaze has proven to be an unobtrusive and objective measure for a person’s
attention [37]. In this section, we show how we can analyze this data during the
decision process of a user to obtain insights on the relevance of the displayed infor-
mation [8]. This requires no explicit user input but analyzes the natural gaze behavior
of the user while they focus on their decision-making task. In contrast to simpler,
visual search tasks, the challenge is that the gaze behavior varies drastically during
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Table 2 For recognizing information relevance from gaze behavior, we combine six well-
established gaze metrics which we can associate with the three cognitive stages of decision-
making [8]

Orientation

TFF Time to first
fixation

The time elapsed between the presentation of a
stimulus and the first time that gaze enters a given
AOI. A low TFF value indicates high relevance

FPG First Pass Gaze The sum of duration of fixations on an AOI during
the first pass, i.e. when the gaze first enters and leaves
the AOI. A high FPG value indicates high relevance

Evaluation

SPG Second pass gaze The sum of duration of fixations on an AOI during
the second pass. A high SPG value indicates high
relevance

RFX Refixations count The number of times an AOI is revisited after it is
first looked at. A high RFX value indicates high
relevance

Verification

SFX Sum of fixations The total number of fixations within an AOI. A high
SFX value indicates high relevance

ODT Overall Dwell Time The total time spent looking at an AOI including
fixations and saccades. A high ODT value indicates
high relevance

the decision process as users transition from obtaining an overview of the UI to
comparing relevant information to finally validating their decision [15, 38].

To account for this variation, we select six different gaze metrics which were
all shown to effectively infer a person’s covert attention in simpler search tasks.
However, gaze behavior during decision-making is more complex and is affected by
the three cognitive stages the user goes through. Each metric captures a different
aspect of these stages. Following Russo and Leclerc [38], we refer to them as (1)
Orientation, (2) Evaluation, and (3) Verification. In the first stage, the user obtains an
overview of the available information, characterized by a scanning pattern of shorter
fixations without many return-fixations. The user then compares the information
determined as relevant going back and forth between the same UI elements. Finally,
short fixations on the most relevant information are used to validate the decision.
While a clear separation of these stages is difficult, they inform our selection of gaze
metrics that capture the different gaze characteristics during decision-making. These
are shown in Table 2.

Each metric can be seen as a weak classifier which outputs a binary decision
whether a UI element is considered relevant by the user or not. By allowing multiple
metrics to vote on an element’s relevance, we imitate a multiple-classifier system
while avoiding the need for training data. We say that a metric casts a vote for a UI
element as being relevant if its standard score (z-score) for the element is positive.
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Fig. 11 Two alternative ways to adapt a room search interface. Left: relevant content is highlighted
through color boxes. Right: irrelevant information is suppressed by graying it out [8]

Intuitively, this means that for that element, the gazemetric deviates from the average
across all elements indicating a different gaze behavior of the user. To establish the
relevance of an element, we count the number of votes cast by the 6 metrics and
compare it to a threshold. Requiring a higher number of votes yields a lower number
of elements being detected as relevant. This is further discussed below. In any case,
this approach does not assume a fixed number of relevant elements a priori. Also, it
is training-free and requires no ground-truth data.

Once we know whether the displayed information is relevant for the user’s deci-
sion, we can adapt the interface to facilitate the decision process. Broadly speaking,
many of the adaptation techniques proposed in the literature (see e.g. [9]) can be
divided into two types: (1) emphasizing relevant content (e.g. coloring, rearrang-
ing or replicating elements) and (2) suppressing irrelevant information (e.g. graying
out, removing, and moving elements to less prominent positions). See Fig. 11 for an
example application. To obtain a benefit from adaptation, it is critical to minimize the
risk of usability issues due to wrong adaptations. For example, wrongly highlighting
seldom used elements in a menu can induce a performance cost that exceeds the
benefit of adaptation [9]. On the other hand, failing to highlight an important menu
item might not bring any benefit to the user but induces no cognitive cost either.
Thus, when emphasizing content, a successful relevance detector should identify
the subset of relevant UI elements (i.e. true positives) while minimizing the risk to
detect irrelevant ones as important (i.e. false positives). When suppressing content,
on the other hand, we are interested in recognizing the non-relevant elements (i.e.
true negatives) while avoiding suppressing any relevant ones (i.e. false negatives)
which might induce a high cognitive cost.

We can easily tune the different recognition rates of the relevance detector
(true/false positive/negative) by varying the number of votes required to recognize
an element as being relevant. Different voting schemes are possible. We can require
a minimum of 1–6 gaze metrics to cast a vote, or we can be more selective and con-
sider votes frommetrics of the same stage (see Table 2) as redundant. In this case, we
might require votes from aminimumof 2 different or all 3 stages. Figure 12 shows the
resulting trade-off between the true positive (relevant elements correctly detected)
and the false positive rates (irrelevant elements detected as relevant) depending on
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Fig. 12 The number of
votes required to detect an
element as relevant changes
the trade-off between the
true positive and false
positive rates. This voting
approach allows to choose
the right trade-off must
depend on the adaptation
scheme. VoteXMetrics
denotes a minimum of 1–6
votes. VoteXStages refers
to a minimum of 2 or 3 votes
which must come from
different stages [8]

the voting scheme. The shaded areas indicate rates that seem acceptable for empha-
sizing or suppressing information. Data comes from an empirical study capturing the
gaze behavior of 12 participants during interaction with a financial trading interface
with information about a specific stock. Participants should decide whether to invest
in the stock or not. Details are given in [8].

The figure shows that the true/false positive rate of the recognizer can easily
be adjusted in a predictable manner to account for the requirements of different
adaptation schemes. We recommend the following vote thresholds:

• For emphasizing relevant information, we recommend aminimum of 3 votes each
from a different stage (Vote3Stages in Fig. 12). This yields a low false posi-
tive rate, reducing the risk of inducing any cognitive dissonance by emphasizing
irrelevant information. At the same time, it ensures that only the most relevant
information is emphasized.

• For suppressing irrelevant information, we recommend aminimum of any 2 votes
(Vote2Metrics in Fig. 12). This yields a high true positive rate, ensuring that
relevant information is not suppressed in any way, which could lead to higher
interaction costs. A high false positive rate is acceptable in this case, which means
that some less relevant content is not suppressed.
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6 Discussion and Outlook

The improvements in AI have given rise to a new class of learning-based gaze estima-
tion methods which make eye tracking more practicable and more widely applicable
in everyday computer interaction. In contrast to traditional gaze estimation meth-
ods, the recently developed learning-based approaches do not require specialized
hardware and can operate with just a single webcam and at a much larger operation
distance. As these methods further improve, they will allow for HCI applications to
consequently use gaze outside the lab and in the everyday interactionwith computers.

Twomajor challenges remain open in enabling out-of-the-box learning-basedgaze
estimation solutions. One is in improving the generalization of models to previously
unseen users, environments, eyeglasses, makeup, camera specifications, and other
confounding factors. This can be tackled by the non-trivial task of collecting datasets
with high-quality ground-truth annotations from a large number of people [36, 60]
and designing novel neural network architectures for better generalization [33, 55]—
both directions which we have extensively studied. The other challenge is due to
person-specific biases, which must be accounted for when higher performance is
required by the interactive application. This challenge exists not only because of the
kappa angle but also the variations in the appearance of the eye and face regions
in the real world. While we have explored several methods to this end in terms of
few-shot adaptation [35, 59], further researchmust be conducted to efficiently collect
data from the end-user without compromising user experience, such as via so-called
implicit calibration [57].

A problem in developing gaze-based interfaces is that the accuracy and precision
of the tracked gaze vary largely depending on many factors, such as the tracking
method, the environment, human features, and others. The application receiving the
gaze information must process a series of noisy data points. We have shown how,
to some extent, a signal can be stabilized by filtering data. However, this does not
account for its inaccuracy. For that, we have made recommendations for designing
gaze-aware applications in a robust way such that they are usable under most con-
ditions [7]. However, such a conservative approach might unnecessarily slow down
or complicate interaction in cases where the gaze is tracked well. An alternative
approach is to develop error-aware applications that recognize the uncertainty in the
signal and adapt to it [1, 7]. As tracking quality decreases, a gaze-aware UI element
could be enlarged, replaced by a more robust alternative, or deactivated entirely to
avoid errors that might be hard to recover from. For such an approach to be useful,
it is crucial to optimize for the time-point of UI adaptation. To this end, future work
is needed that investigates how to trade-off potential gains through adaptation with
the cost for the user to get used to a new interface. For taking into account personal
preferences, such adaptations could even be done after explicitly querying the user.

We have seen that data about where a user is looking can not only be used for
explicit interaction but also to make predictions about the user’s cognitive processes,
abilities, or intentions. Such attentive applications do not require the user to con-
sciously control their gaze which can be cumbersome. Instead, they process the
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natural gaze behavior of the user with the goal to facilitate interaction. However,
approaches to interpreting the eye gaze are often tailored to specific application
cases and general solutions are rare. The voting scheme presented in this chapter
(Sect. 5.2) is a first attempt to develop a more general approach for estimating the
relevance of displayed information to a specific user and was shown to work across
different decision-making tasks [8]. More work is needed though to develop general
methods for inferring a user’s intent, difficulties, or preferences from their gaze data
and thus facilitate the design of intelligent user interfaces.

Once we can reliably derive information about the user’s attention and intention
from the estimated gaze, it is important to consider how to make effective use of this
data in practice. In a user study conducted in [8], the large majority of participants
confirmed that the tested application could correctly detect content relevant for their
decision-making. Many also preferred the adapted version of the interface. However,
the specific highlighting and suppression adaptations (see Fig. 11) did not lead to
measurable improvements in terms of task execution time, users’ perceived informa-
tion load, or their confidence in their decision. Future work needs to develop better
approaches to utilize such relevant information and develop UI adaptation schemes
that facilitate the decision-making process for the user [14, 26]. Such work should
also consider how adaptive interfaces can build trust to resolve users’ concern of
being manipulated by the interface [8, 32].

7 Conclusion

The advancement of AI techniques is boosting gaze estimation to become one of the
major interactive signals for modern human-computer interaction. New learning-
based methods have been developed for appearance-based, model-based, and hybrid
gaze estimation methods. In particular, these learning-based methods can work with
just a single webcam under challenging lighting conditions even over long operating
distances of up to 2 m. The gaze estimation error is maintained to about 4◦ without
personal calibration and 2◦ with personal calibration under variant challenging condi-
tions. However, learning-based methods rely on large and varied datasets of different
conditions and devices. Therefore, multiple datasets have been proposed that capture
variations in head poses, gaze directions, lighting conditions, personal appearances,
or input image resolutions. Although there is still a gap between methods using a
single webcam and those with dedicated hardware, the presented research indicates
promising efforts yield a performance that is close to that of traditional methods.

One of the key issues of the gaze estimation task is that collecting personal calibra-
tion data is tedious for the user. There are twoways to tackle this issue. The first one is
efficiently using the personal calibration data with few-shot learning or synthetically
generatingmore training samples with a few calibration images. The second effective
way is carefully designing user interfaces (UI) that take into account this potential
noise and thus the uncertainty of the input signal. We proposed actionable design
guidelines for gaze-enabled applications including appropriate target sizes, target
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dimensions, visual representations, placement, and optimal parameter settings for
different gaze filters. In addition, we introduced the OpenGaze and GazeML open-
source toolkits which make the entire gaze estimation pipeline easily accessible to
HCI researchers.

Wepresented two examples that showhow the use of implicit gaze information can
enable entirely new interactive concepts. Gaze-aware real-life objects can recognize
when a user is looking at themwithout any specific camera-object or user calibration.
In the second case, we showed that the user’s gaze behavior can reveal whether
displayed content is useful and relevant to the current task of a user. Such information
can be used, for example, to adapt the user interface accordingly. Both exampleswork
without requiring the user to explicitly control their eye gaze but analyze their natural
gaze behavior during interaction.

In summary, AI-inspired methods have revolutionized approaches for estimating
where a person is looking on a screen or in the 3D world. Already now, learning-
based approaches enable sufficiently good gaze estimation in many real-world envi-
ronments with just a single camera, bringing eye tracking out of the lab and into
our everyday interaction with computers. This not only makes gaze a viable input
method in situations where keyboard or touch input is not available or not feasible
but also opens the doors for entirely new interactions and applications that can take
into account gaze as an additional information source about the user’s state.
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